50 μg/ml microtubules, 1 mM DTT (Sigma D9779), 5 μM paclitaxel (Sigma T-7402), 10 ppm antifoam 289 (Sigma A-8436), 25 mM Pipes/KOH pH 6.8 (Sigma P6757), 2 mM MgCl2 (VWR JT4003-01), and 1 mM EGTA (Sigma E3889). Serial dilutions (8-12 two-fold dilutions) of the compounds are made in a 96-well microtiter plate (Corning Costar 3695) using Solution 1. Following serial dilution each well has 50 μ l of Solution 1. The reaction is started by adding 50 μ l of Solution 2 to each well. This may be done with a multichannel pipettor either manually or with automated liquid handling devices. The microtiter plate is then transferred to a microplate absorbance reader and multiple absorbance readings at 340 nm are taken for each well in a kinetic mode. The observed rate of change, which is proportional to the ATPase rate, is then plotted as a function of the compound concentration. For a standard IC₅₀ determination the data acquired is fit by the following four parameter equation using a nonlinear fitting program (e.g., Grafit 4): $$y = \frac{\text{Range}}{1 + \left(\frac{x}{IC_{50}}\right)^{s}} + Background$$ where y is the observed rate and x the compound concentration. 1. A method of inhibiting KSP kinesin activity which comprises contacting said kinesin with an effective amount of a compound having the structure represented by Formula I: $$\begin{array}{c|c} R_5 & O & \\ \hline \\ R_7 & \hline \\ R_8 & R_{12} \end{array}$$ wherein: - R₁ is chosen from optionally substituted phenyl-C₁-C₄-alkyl-, optionally substituted heteroaryl-C₁-C₄-alkyl-, and naphthalenylmethyl-; - R₂ and R₂, are independently chosen from hydrogen, optionally substituted alkyl-, optionally substituted alkoxy, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, and optionally substituted heteroaralkyl-; or R₂ and R₂, taken together form an optionally substituted 3- to 7-membered ring; - R_{12} is selected from the group consisting of optionally substituted imidazolyl-, optionally substituted imidazolinyl-, —NHR₄; —N(R₄)(COR₃); —N(R₄)(SO₂R_{3a}); and —N(R₄)(CH₂R_{3b}); - R₃ is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted - aralkyl-, optionally substituted heteroaryl-, optionally substituted heteroaralkyl-, $R_{15}O$ and R_{17} —NH—; - R_{3a} is chosen from optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, optionally substituted heteroaralkyl-, and R₁₇—NH—; - R_{3b} is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, and optionally substituted heteroaralkyl-; - R_4 is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heterocyclyl-, and optionally substituted heteroaralkyl-; - R₅, R₆, R₇ and R₈ are independently chosen from hydrogen, optionally substituted alkyl, optionally substituted alkoxy, halogen, hydroxyl, nitro, cyano, dialkylamino, alkylsulfonyl, alkylsulfonamido, alkylthio, carboxyalkyl, carboxamido, aminocarbonyl, optionally substituted aryl and optionally substituted heteroaryl; - R_{15} is optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, or optionally substituted heteroaralkyl-; and - R₁₇ is chosen from hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heteroaralkyl; - a pharmaceutically acceptable salt of a compound of Formula I; - a pharmaceutically acceptable solvate of a compound of Formula I; - or a pharmaceutically acceptable solvate of a pharmaceutically acceptable salt of a compound of Formula I. - 2-5. (canceled) - **6**. A method according to claim 1, wherein R_1 is benzyl. - 7. A method according to claim 1, wherein R_2 and $R_{2'}$ are independently chosen from hydrogen, optionally substituted alkyl-, optionally substituted alkoxy, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, and optionally substituted heteroaralkyl-; or R_2 and $R_{2'}$ taken together form an optionally substituted 3- to 7-membered ring. - **8**. A method according to claim 7, wherein R_2 is optionally substituted C_1 - C_4 alkyl-, and R_2 is hydrogen or optionally substituted C_1 - C_4 alkyl-. - **9**. A method according to claim 8, wherein R_2 is hydrogen and R_2 is optionally substituted C_1 - C_4 alkyl-. - 10. A method according to claim 9, wherein R_2 is hydrogen and R_2 is ethyl or propyl. - 11. A method according to claim 10, wherein R_2 is i-propyl. - 12. A method according to claim 1, wherein if either R_2 or R_2 is hydrogen, then the other is not hydrogen. - 13. A method according to claim 1, wherein R_5 , R_6 , R_7 , and R_8 are independently chosen from hydrogen, hydroxyl, halogen, optionally substituted C_1 - C_4 alkyl-, C_1 - C_4 alkoxy, cyano, amino, substituted amino, or carbamyl-.